Wu Huayong

General Information
Name: Wu Huayong
Title: Associate Professor
Work Email: hywu@issas.ac.cn
Work Phone: 025-86881269
Research Fields
(1)Soil genesis and soil taxonomy
(2)Soil biogeochemistry
(3)Critical Zone structure, process and function
Education Background
(1)2008-2014, Ph.D., Soil Science, Huazhong Agricultural University, Wuhan, China
(2)2004 – 2008, Bachelor, Agricultural Resources and Environment, Huazhong Agricultural University, Wuhan, China
Professional Experience
(1)2020 – Present, Associate Professor, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
(2)2015 – 2020, Assistant Professor, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
Projects
(1)Accumulation mechanism and source identification of nitrate at depth in a red soil Critical Zone, 2020.01-2023.12, National Natural Science Foundation of China (PI)
(2)Microbes and their driving mechanisms to mineral weathering through regolith profiles developed on basalt in Hainan Island, China, 2016.01-2018.12, National Natural Science Foundation of China (PI)
Patents
(1)Wu Huayong, Li Decheng, Zhao Yuguo, et al. A method for making peat soil monoliths: 202010516060.4, 2020-06-09
(2)Wu Huayong, Li Decheng, Zhao Yuguo, et al. A method for making monoliths of soils with a high water content and strong expansibility: 202010516063.8, 2020-06-09
Publications
(*denotes corresponding author)
(1)Zhang, G.-L.*, Wu, H.-Y., Shi, Z., Yan, X.-Y., Shen, R.-F. Priorities of soil research and soil management in China in the coming decade. Geoderma Regional, 2022, 29, e00537.
(2)Wu, H.-Y., Song, X.-D., Liu, Feng, Li, D.-C., Zhang, G.-L.* Geophysical and geochemical characterization reveals topography controls on critical zone structure in a low hilly region. Earth Surface Processes and Landforms, 2022, 47: 2796–2810.
(3)Liu, F., Wu, H.-Y., Zhao, Y.-G., Li, D.-C., Yang, J.-L., Song, X.-D., Shi, Z., Zhu, A.-X., Zhang, G.-L.* Mapping high resolution National Soil Information Grids of China. Science Bulletin, 2022, 67: 328–340.
(4)Song, X.-D., Yang, F., Wu, H.-Y., Zhang, J., Li, D.-C., Liu, F., Zhao, Y.-G., Yang, J.-L., Ju, B., Cai, C.-F., Huang, B., Long, H.-Y., Lu, Y., Sui, Y.-Y., Wang, Q.-B., Wu, K.-N., Zhang, F.-R., Zhang, M.-K., Shi, Z., Ma, W.-Z., Xin, G., Qi, Z.-P., Chang, Q.-R., Ci, E., Yuan, D.-G., Zhang, Y.-Z., Bai, J.-P., Chen, J.-Y., Chen, J., Chen, Y.-J., Dong, Y.-Z., Han, C.-L., Li, L., Liu, L.-M., Pan, J.-J., Song, F.-P., Sun, F.-J., Wang, D.-F., Wang, T.-W., Wei, X.-H., Wu, H.-Q., Zhao, X., Zhou, Q., Zhang, G.-L.* Significant loss of soil inorganic carbon at the continental scale. Significant loss of soil inorganic carbon at the continental scale. National Science Review, 2022, 9: nwab120.
(5)Yang, S.-H., Dong, Y., Song, X.-D., Wu, H.-Y., Zhao, X.-R., Yang, J., Chen, S.-C., Smith, J., Zhang, G.-L.* Vertical distribution and influencing factors of deep soil organic carbon in a typical subtropical agricultural watershed. Agriculture, Ecosystems and Environment, 2022, 339: 108141.
(6)Wu, H.-Y., Dong, Y., Gao, L., Song, X.-D., Liu, F., Peng, X.-H., Zhang, G.-L.* Identifying nitrate sources in surface water, regolith and groundwater in a subtropical red soil Critical Zone by using dual nitrate isotopes. Catena, 2021, 198: 104994.
(7)Wu, H.-Y., Song, X.-D., Liu, F., Zhao, X.-R., Zhang, G.-L*. Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China. Catena, 2020, 192: 104589.
(8)Yang, S.-H., Wu, H.-Y.*, Song, X.-D., Dong, Y., Zhao, X.-R., Cao, Q., Yang, J.-L., Zhang, G.-L.* Variation of deep nitrate in a typical red soil Critical Zone: Effects of land use and slope position. Agriculture, Ecosystems and Environment, 2020, 297: 106966.
(9)Wu, H.-Y., Adams, J.-M., Shi, Y., Li, Y.-T., Song, X.-D., Zhao, X.-R., Chu, H.-Y.*, Zhang, G.-L.* Depth-dependent patterns of bacterial communities and assembly processes in a typical red soil Critical Zone. Geomicrobiology Journal, 2020, 37: 201–212.
(10)Yang, S.-H., Wu, H.-Y., Dong, Y., Zhao, X.-R., Song, X.-D., Yang, J.-L., Hallett, P.-D., Zhang, G.-L.* Deep nitrate accumulation in a highly weathered subtropical critical zone depends on the regolith structure and planting year. Environmental Science & Technology, 2020, 54: 13739–13747.
(11)Song, X.-D., Wu, H.-Y., Hallett, P.-D., Pan, X.-C., Hu, X.-F., Cao, Q., Zhao, X.-R., Zhang, G.-L.* Paleotopography continues to drive surface to deep-layer interactions in a subtropical Critical Zone Observatory. Journal of Applied Geophysics, 2020, 175: 103987.
(12)Cao, Q., Song, X.-D., Wu, H.-Y., Gao, L., Liu, F., Yang, S.-H., Zhang, G.-L.* Mapping the response of volumetric soil water content to an intense rainfall event at the field scale using GPR. Journal of Hydrology, 2020, 583: 124605.
(13)Wu, H.-Y., Song, X.-D., Zhao, X.-R., Peng, X.-H., Zhou, H., Hallett, P.D., Hodson, M.E., Zhang, G.-L.* Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil Critical Zone. Geoderma, 2019, 337: 1175–1185.
(14)Wu, H.-Y., Song, X.-D., Zhao, X.-R., Zhang, G.-L.* Conversion from upland to paddy field intensifies human impacts on element behavior through regolith. Vadose Zone Journal, 2019, 18: 190062.
(15)Zhao, X.-R., Wu, H.-Y., Song, X.-D., Yang, S.-H., Dong, Y., Yang, J.-L., Zhang, G.-L.* Intra-horizon differentiation of the bacterial community and its co-occurrence network in a typical Plinthic horizon. Science of the Total Environment, 2019, 678: 692–701.
(16)Song, X.-D., Wu, H.-Y., Liu, F., Tian, J., Cao, Q., Yang, S.-H., Peng, X.-H., Zhang, G.-L.* Three-dimensional mapping of organic carbon using piecewise depth functions in the Red Soil Critical Zone Observatory. Soil Science Society of America Journal, 2019, 83: 687–696.
(17)Huang, Q.-Y., Wu, H.-Y., Peng, C., Fein, J.B., Chen, W.-L.* Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Scientific Reports, 2015, 5: 16857.
(18)Wu, H.-Y., Chen, W.-L.*, Rong, X.-M., Cai, P., Dai, K., Huang, Q.-Y.* Adhesion of Pseudomonas putida onto kaolinite at different growth phases. Chemical Geology, 2014, 390: 1–8.
(19)Wu, H.-Y., Chen, W.-L.*, Rong, X.-M., Cai, P., Dai, K., Huang, Q.-Y.* Soil colloids and minerals modulate metabolic activity of Pseudomonas putida measured using microcalorimetry. Geomicrobiology Journal, 2014, 31: 590–596.
(20)Wu, H.-Y., Chen W.-L., Rong X.-M., Cai P., Dai K., Huang Q.-Y.* In situ ATR-FTIR study on the adhesion of Pseudomonas putida to Red soil colloids. Journal of Soils and Sediments, 2014, 14: 504–514.
(21)Wu, H.-Y., Jiang, D.-H., Cai, P., Rong, X.-M., Dai, K., Liang, W., Huang, Q.-Y.* Adsorption of Pseudomonas putida on soil particle size fractions: Effects of solution chemistry and organic matter. Journal of Soils and Sediments, 2012, 12: 143–149.
(22)Wu, H.-Y., Jiang, D.-H., Cai, P., Rong, X.-M., Huang, Q.-Y.* Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide. Colloids and Surfaces B: Biointerfaces, 2011, 82: 147–151.

Contact Us

Address: No.298 Chuangyou Road, Jiangning District, Nanjing, China
E-mail: iss@issas.ac.cn
Phone: 025-86881114